Sistem bilangan biner atau
sistem bilangan basis dua adalah
sebuah sistem penulisan angka dengan menggunakan dua simbol
yaitu 0
dan 1.
Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17.
Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis
digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal.
Sistem ini juga dapat kita sebut dengan istilah bit,
atau Binary Digit.
Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1
Byte/bita. Dalam
istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer,
seperti ASCII, American Standard Code for Information
Interchange menggunakan sistem peng-kode-an 1 Byte.
20=1,21=2,22=4,23=8,24=16,25=32,26=64
Desimal
|
Biner
(8 bit)
|
0
|
0000 0000
|
1
|
0000 0001
|
2
|
0000 0010
|
3
|
0000 0011
|
4
|
0000 0100
|
5
|
0000 0101
|
6
|
0000 0110
|
7
|
0000 0111
|
8
|
0000 1000
|
9
|
0000 1001
|
10
|
0000 1010
|
11
|
0000 1011
|
12
|
0000 1100
|
13
|
0000 1101
|
14
|
0000 1110
|
15
|
0000 1111
|
16
|
0001 0000
|
Perhitungan dalam biner mirip dengan
menghitung dalam sistem bilangan lain. Dimulai dengan angka
pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan
mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0
dan 1.
contoh: mengubah bilangan desimal menjadi
biner
desimal = 10.
berdasarkan referensi diatas yang mendekati
bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21).
sehingga dapat dijabarkan seperti berikut
10 = (1 x 23) + (0 x
22) + (1 x 21) + (0 x 20).
dari perhitungan di atas bilangan biner dari
10 adalah 1010
dapat juga dengan cara lain yaitu 10 : 2
= 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil
pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua
terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0
akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian
ketiga): 2 = 0 sisa 1 (0 akan menjadi angka pertama dalam bilangan
biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10
= 1010
atau dengan cara yang singkat 10:2=5(0),5:2=2(1),2:2=1(0),1:2=0(1)sisa
hasil bagi dibaca dari belakang menjadi 1010.
Didalam dunia komputer kita mengenal empat
jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang
terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan
desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal
terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.
Biner
|
Oktal
|
Desimal
|
Hexadesimal
|
0000
|
0
|
0
|
0
|
0001
|
1
|
1
|
1
|
0010
|
2
|
2
|
2
|
0011
|
3
|
3
|
3
|
0100
|
4
|
4
|
4
|
0101
|
5
|
5
|
5
|
0110
|
6
|
6
|
6
|
0111
|
7
|
7
|
7
|
1000
|
10
|
8
|
8
|
1001
|
11
|
9
|
9
|
1010
|
12
|
10
|
A
|
1011
|
13
|
11
|
B
|
1100
|
14
|
12
|
C
|
1101
|
15
|
13
|
D
|
1110
|
16
|
14
|
E
|
1111
|
17
|
15
|
F
|
Tidak ada komentar:
Posting Komentar